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Convolutions Involving the Exponential Function
and the Exponential Integral

Brian Fisher and Fatma Al-Sirehy

Abstract. The exponential integral ei(λx) and its associated func-
tions ei+(λx) and ei−(λx) are defined as locally summable functions
on the real line and their derivatives are found as distributions. The
convolutions xr ei+(x) ∗ xsex+ and xr ei+(x) ∗ xsex are evaluated.

1. Introduction and Results

The exponential integral ei(x) is defined for x > 0 by

(1) ei(x) =

∫ ∞
x

u−1e−u du,

see Sneddon [8], the integral diverging for x ≤ 0. It was pointed out in [1]
that equation (1) can be rewritten in the form

(2) ei(x) =

∫ ∞
x

u−1[e−u −H(1− u)] du−H(1− x) ln |x|,

where H denotes Heaviside’s function. The integral in this equation is
convergent for all x and so we use equation (2) to define ei(x) on the real
line.

More generally, see [1], if λ 6= 0, we define ei(λx) in the obvious way by

(3) ei(λx) =

∫ ∞
λx

u−1[e−u −H(1− u)] du−H(1− λx) ln |λx|.

Further, we define the functions ei+(λx) and ei−(λx) by

ei+(λx) = H(x) ei(λx), ei−(λx) = H(−x) ei(λx)

so that

(4) ei(λx) = ei+(λx) + ei−(λx).

In particular, if λ > 0, we have

ei(λx) =

∫ ∞
x

u−1[e−λu −H(1− λu)] du−H(1− λx) ln |λx|,(5)
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ei+(λx) =

∫ ∞
x

u−1e−λu du, x > 0,(6)

ei−(λx) = −γ(λ) +

∫ 0

x
u−1(e−λu − 1) du− lnx−, x < 0,(7)

where
γ(λ) = γ + ln |λ|

and
γ = −

∫ ∞
0

u−1[e−λu −H(1− λu)] du

is Euler’s constant.
The derivatives of these functions are given by

(8)

[ei(λx)]′ = −e−λxx−1,

[ei+(λx)]′ = −e−λxx−1+ − γ(λ)δ(x),

[ei−(λx)]′ = e−λxx−1− + γ(λ)δ(x)),

for all λ 6= 0.
In particular, we have

(9)

ei(x) =

∫ ∞
x

u−1[e−u −H(1− u)] du−H(1− x) ln |x|,

ei+(x) =

∫ ∞
x

u−1e−u du, x > 0,

ei−(x) = −γ +

∫ 0

x
u−1(e−u − 1) du− lnx−, x < 0,

where
γ = −

∫ ∞
0

u−1[e−u −H(1− u)] du

is Euler’s constant.
The derivatives of these functions are given by

(10)

[ei(x)]′ = −e−xx−1,
[ei+(x)]′ = −e−xx−1+ − γδ(x),

[ei−(x)]′ = e−xx−1− .

The classical definition of the convolution of two functions f and g is as
follows:

Definition 1. Let f and g be functions. Then the convolution f ∗ g is
defined by

(f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t) d t

for all points x for which the integral exist.
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It follows easily from the definition that if f ∗ g exists then g ∗ f exists
and

(11) f ∗ g = g ∗ f

and if (f ∗ g)′ and f ∗ g′ (or f ′ ∗ g) exists, then

(12) (f ∗ g)′ = f ∗ g′( or f ′ ∗ g).

Definition 1 can be extended to define the convolution f ∗ g of two distri-
butions f and g in D′ with the following definition, see Gel’fand and Shilov
[7].

Definition 2. Let f and g be distributions in D′. Then the convolution
f ∗ g is defined by the equation

〈(f ∗ g)(x), ϕ〉 = 〈f(y), 〈g(x), ϕ(x+ y)〉〉

for arbitrary ϕ in D, provided f and g satisfy either of the conditions

(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f ∗ g exists by this definition then equa-
tions (10) and (11) are satisfied.

The locally summable functions ex+ and ex− are defined by

ex+ = H(x)ex ex− = H(−x)ex.

In the following we need the following lemma, which is easily proved by
induction.

Lemma 1. ∫ u

0
tke−t d t = −

k∑
i=0

k!

i!
uie−u + k!,

∫ u

0
tke−2t d t = −

k∑
i=0

k!

2k−i+1i!
uie−2u +

k!

2k+1
,

for k = 0, 1, 2, . . ..

We now prove the following theorem.



68 Convolutions Involving the Exponential Function. . .

Theorem 1. The convolution xr ei+(x) ∗ xsex+ exists and

(13)

xr ei+(x) ∗ xsex+ =

=

s∑
k=0

r+k∑
i=1

(
s

k

)
(−1)k(r + k)!xs−k

[ i−1∑
j=0

(i− 1)!

2i−ji!j!
xje−x+ −

(i− 1)!

2ii!
ex+

]
+

s∑
k=0

(
s

k

)
(−1)k(r + k)!xs−k[ex ei+(2x)− ex ei+(x) + ln 2 ex+]

−
s∑

k=0

(
s

k

)
(−1)k(r + k)!xs−k

[r+k∑
i=1

xi

i!
+ (1− ex)

]
ei+(x),

for r, s = 0, 1, 2, . . . and r, s not both zero.
In particular,

(14)

xr ei+(x) ∗ ex+ = r!

r∑
i=1

[ i−1∑
j=0

(i− 1)!

2i−ji!j!
xje−x+ −

(i− 1)!

2ii!
ex+

]
+ r![ex ei+(2x)− ex ei+(x) + ln 2 ex+]

− r!
[ r∑
i=1

xi

i!
+ (1− ex)

]
ei+(x),

for r = 1, 2, . . . and

(15) ei+(x) ∗ ex+ = − ei+(x) + ex ei+(2x) + ln 2 ex+.

Proof. The convolution xr ei+(x) ∗ xsex+ = 0 if x < 0 and so when x > 0, we
have

(16)

xr ei+(x) ∗ xsex+ =

∫ x

0
tr(x− t)sex−t

∫ ∞
t

u−1e−u dud t

=

∫ x

0
u−1ex−u

∫ u

0
tr(x− t)se−t d tdu

+

∫ ∞
x

u−1ex−u
∫ x

0
tr(x− t)se−t d t du

= I1 + I2,

where

(17)

∫ u

0
tr(x− t)se−t d t =

=
s∑

k=0

(
s

k

)
(−1)kxs−k

∫ u

0
tr+ke−t d t

= −
s∑

k=0

(
s

k

)
(−1)k(r + k)!xs−k

[r+k∑
i=1

ui

i!
e−u + (e−u − 1)

]
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and in particular when r = s = 0,

(18)
∫ u

0
e−t d t = −e−u + 1,

on using the lemma.
Hence

(19)

I1 = −
s∑

k=0

(
s

k

)
(−1)k(r + k)!xs−kex·

·
∫ x

0

[r+k∑
i=1

ui−1

i!
e−2u + u−1(e−2u − e−u)

]
du

= −
s∑

k=0

(r + k)!

r+k∑
i=1

(
s

k

)
(−1)kxs−kex

∫ x

0

ui−1

i!
e−2u du

−
s∑

k=0

(
s

k

)
(−1)k(r + k)!xs−kex

∫ x

0
u−1(e−2u − e−u) du.

Further, we have

(20)
∫ x

0

ui−1

i!
e−2u du = −

i−1∑
j=0

(i− 1)!

2i−ji!j!
xje−2x +

(i− 1)!

2ii!
,

on using the lemma, and

(21)

∫ x

0
u−1[e−u −H(1− u)] du =

=

∫ ∞
0

u−1[e−u −H(1− u)] du

−
∫ ∞
x

u−1e−u du+

∫ ∞
x

u−1H(1− u) du

= −γ − ei+(x) +

∫ ∞
x

u−1H(1− u) du.

Similarly

(22)
∫ x

0
u−1[e−2u−H(1−2u)] du = −γ−ei+(2x)+

∫ ∞
x

u−1H[1−2u] du.

It follows from equations (21) and (22) that

(23)

∫ x

0
u−1(e−u − e−2u) du =

= ei+(2x)− ei+(x) +

∫ ∞
0

u−1[H(1− u)−H(1− 2u)] du

= ei+(2x)− ei+(x) + ln 2.
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In particular, when r = s = 0, we have

(24) I1 = [ei+(2x)− ei+(x) + ln 2]ex+.

Next, as in equation (17), we have

(25)

∫ x

0
tr(x− t)se−t d t =

= −
s∑

k=0

(
s

k

)
(−1)k(r + k)!xs−k

[r+k∑
i=1

xi

i!
e−x + (e−x − 1)

]
and so

(26) I2 = −
s∑

k=0

(
s

k

)
(−1)k(r + k)!xs−k

[r+k∑
i=1

xi

i!
+ (1− ex)

]
ei+(x).

In particular, when r = s = 0, we have

(27) I2 = (ex − 1)

∫ ∞
x

u−1e−u du = (ex − 1) ei+(x).

Equation (13) now follows from equations (20), (21), (22), (25) and (26).
Equation (14) follows on putting s = 0 in equation (13) and equation (15)

follows on putting r = 0 in equation (14). �

In the corollary, the distribution x−2+ is defined by x−2+ = (x−1+ )′ and not
as in Gel’fand and Shilov.

Corollary 1.1. The convolutions (e−xx−1+ )∗ex+ and (e−xx−2+ )∗ex+ exist and

(e−xx−1+ ) ∗ ex+ = −ex ei+(2x)− γ(2)ex+(28)

(e−xx−2+ ) ∗ ex+ = 2ex ei+(2x) + 2γ(2)ex+ − e−xx−1+ .(29)

Proof. The convolution (e−xx−1+ ) ∗ ex+ exists by Definition 2, since e−xx−1+

and ex+ are both bounded on the left. From equation (12), we have

[ei+(x) ∗ ex+]′ = −[e−xx−1+ + γδ(x)] ∗ ex+
= −(e−xx−1+ ) ∗ ex+ − γex+
= ei+(x) ∗ [ex+ + δ(x)]

= ex ei+(2x) + ln 2 ex+

and equation (28) follows.
From equations (12) and (28), we now have

[(e−xx−1+ ) ∗ ex+]′ = −(e−xx−1+ + e−xx−2+ ) ∗ ex+
= ex ei+(2x) + γ(2)ex+ − (e−xx−2+ ) ∗ ex+
= (e−xx−1+ ) ∗ [ex+ + δ(x)]

= −ex ei+(2x)− γ(2)ex+ + e−xx−1+
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and equation (29) follows. �

Theorem 2. The convolution xr ei+(x) ∗ xsex exists and

(30)

xr ei+(x) ∗ xsex = −
s∑

k=0

r+k∑
i=1

(
s

k

)
(−1)k(r + k)!

2ii!
xs−kex

+

s∑
k=0

(
s

k

)
(−1)k ln 2(r + k)!xs−kex,

for r, s = 0, 1, 2, . . . and r, s not both zero.
In particular

(31) xr ei+(x) ∗ ex = −
r∑
i=1

r!

2ii!
ex + ln 2r!ex,

for r = 1, 2, . . . and

ei+(x) ∗ ex = ln 2 ex(32)

ei+(x) ∗ xex = ln 2xex − ln 2 ex +
1

2
ex.(33)

Proof. We have

xr ei+(x) ∗ xsex =

∫ ∞
0

tr(x− t)sex−t
∫ ∞
t

u−1e−u dud t

=

∫ ∞
0

u−1ex−u
∫ u

0
tr(x− t)se−t d tdu

= −
s∑

k=0

(
s

k

)
(−1)k(r + k)!xs−kex

r+k∑
i=1

∫ ∞
0

ui−1

i!
e−2u du

−
s∑

k=0

(
s

k

)
(−1)k(r + k)!xs−kex

∫ ∞
0

(u−1e−2u − u−1e−u) du

= −
s∑

k=0

r+k∑
i=1

(
s

k

)
(−1)k(r + k)!

2ii
xs−kex

+
s∑

k=0

(
s

k

)
(−1)k ln 2(r + k)!xs−kex

on making use of equation (17), the lemma and noting that∫ ∞
0

u−1(e−2u − e−u) du =

∫ ∞
0

lnu(2e−2u − e−u) du

= Γ′(1)− ln 2− Γ′(1) = − ln 2,

proving equation (30).
Equation (31) follows on putting s = 0 in equation (30) and equation (32)

follows on putting r = 0 in equation (31).
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Equation (31) follows on putting r = 0 and s = 1 in equation (30). �

Corollary 2.1. The convolution (e−xx−n+ ) ∗ ex exists and

(34) e−xx−n+ ∗ ex =
(−1)n2n−1

(n− 1)!
γ(2)ex

for n = 1, 2, . . . .
In particular,

(35) e−xx−1+ ∗ xex = −γ(2)xex − 1

2
ex.

Proof. Differentiating equation (32), we get

[−e−xx−1+ − γδ(x)] ∗ ex = −(e−xx−1+ ) ∗ ex − γex = ln 2ex

and we see that equation (34) is true when n = 1.
Now assume that equation (34) is true for some n. Then differentiating

equation (34), we get

(−e−xx−n+ − ne−xx−n−1+ ) ∗ ex = (e−xx−n+ ) ∗ ex.
It follows that

ne−xx−n−1+ ∗ ex = −2(e−xx−n+ ) ∗ ex

=
(−1)n+12n

(n− 1)!
γ(2)ex

and so equation (33) is true for n+1. Equation (34) now follows by induction.
Differentiating equation (33), we get

[−e−xx−1+ − γδ(x)] ∗ xex = ln 2xex +
1

2
ex

and equation (35) follows. �

For further results involving the exponential integral, see [2, 3, 4, 5] and
[6].
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